Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Ovarian Res ; 17(1): 65, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500173

RESUMO

BACKGROUND: It is well described that circulating progesterone (P4) plays a key role in several reproductive events such as oocyte maturation. However, during diestrus, when circulating P4 is at the highest concentrations, little is known about its local impact on the follicular cells such as intrafollicular P4 concentration due to corpus luteum (CL) presence within the same ovary. Based on that, our hypothesis is that the CL presence in the ovary during diestrus alters intrafollicular P4 concentrations, oocyte competence acquisition, follicular cells gene expression, and small extracellular vesicles (sEVs) miRNAs contents. RESULTS: P4 hormonal analysis revealed that ipsilateral to the CL follicular fluid (iFF) presented higher P4 concentration compared to contralateral follicular fluid (cFF). Furthermore, oocyte maturation and miRNA biogenesis pathways transcripts (ADAMTS-1 and AGO2, respectively) were increased in cumulus and granulosa cells of iFF, respectively. Nevertheless, a RT-PCR screening of 382 miRNAs showed that three miRNAs were upregulated and two exclusively expressed in sEVs from iFF and are predicted to regulate cell communication pathways. Similarly, seven miRNAs were higher and two exclusively expressed from cFF sEVs and are predicted to modulate proliferation signaling pathways. CONCLUSION: In conclusion, intrafollicular P4 concentration is influenced by the presence of the CL and modulates biological processes related to follicular cell development and oocyte competence, which may influence the oocyte quality. Altogether, these results are crucial to improve our knowledge about the follicular microenvironment involved in oocyte competence acquisition.


Assuntos
Vesículas Extracelulares , MicroRNAs , Feminino , Animais , Bovinos , Líquido Folicular/metabolismo , Progesterona/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oócitos/metabolismo , Corpo Lúteo/metabolismo , Vesículas Extracelulares/genética , Expressão Gênica
2.
Biomedicines ; 11(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37761017

RESUMO

Mechanisms of cell reprogramming by pluripotency-related transcription factors or nuclear transfer seem to be mediated by similar pathways, and the study of the contribution of OCT4 and SOX2 in both processes may help elucidate the mechanisms responsible for pluripotency. Bovine fibroblasts expressing exogenous OCT4 or SOX2, or both, were analyzed regarding the expression of pluripotency factors and imprinted genes H19 and IGF2R, and used for in vitro reprogramming. The expression of the H19 gene was increased in the control sorted group, and putative iPSC-like cells were obtained when cells were not submitted to cell sorting. When sorted cells expressing OCT4, SOX2, or none (control) were used as donor cells for somatic cell nuclear transfer, fusion rates were 60.0% vs. 64.95% and 70.53% vs. 67.24% for SOX2 vs. control and OCT4 vs. control groups, respectively; cleavage rates were 66.66% vs. 81.68% and 86.47% vs. 85.18%, respectively; blastocyst rates were 33.05% vs. 44.15% and 52.06% vs. 44.78%, respectively. These results show that the production of embryos by NT resulted in similar rates of in vitro developmental competence compared to control cells regardless of different profiles of pluripotency-related gene expression presented by donor cells; however, induced reprogramming was compromised after cell sorting.

3.
PLoS One ; 18(4): e0284809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37083878

RESUMO

Despite the advances in in vitro embryo production (IVP) over the years, the technique still has limitations that need to be overcome. In cell cultures, it is already well established that three-dimensional culture techniques are more physiological and similar to the in vivo development. Liquid marble (LM) is a three-dimensional system based on the use of a hydrophobic substance to create in vitro microbioreactors. Thus, we hypothesized that the LM system improves bovine in vitro oocyte maturation and embryo culture. In experiment I, bovine cumulus-oocyte complexes (COCs) were placed for in vitro maturation for 22h in two different groups: control (conventional 2D culture) and LM (three-dimensional culture). We found that oocyte nuclear maturation was not altered by the LM system, however it was observed a decrease in expression of genes important in the oocyte maturation process in cumulus cells of LM group (BCL2, EIF4E, and GAPDH). In experiment II, the COCs were conventionally matured and fertilized, and for culture, they were divided into LM or control groups. There was a decrease in blastocyst rate and cell counting, a down-regulation of miR-615 expression, and an increase in the DNA global methylation and hydroxymethylation in embryos of LM group. Therefore, for the bovine in vitro embryo production, this specific three-dimensional system did not present the advantages that we expected, but demonstrated that the embryos changed their development and epigenetics according to the culture system.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Oócitos , Feminino , Animais , Bovinos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/metabolismo , Oogênese/genética , Células do Cúmulo/metabolismo , Embrião de Mamíferos , Blastocisto , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Desenvolvimento Embrionário/fisiologia
4.
Methods Mol Biol ; 2647: 225-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041338

RESUMO

Cloning by somatic cell Nuclear Transfer (SCNT) is a powerful technology capable of reprograming terminally differentiated cells to totipotency for generating whole animals or pluripotent stem cells for use in cell therapy, drug screening, and other biotechnological applications. However, the broad usage of SCNT remains limited due to its high cost and low efficiency in obtaining live and healthy offspring. In this chapter, we first briefly discuss the epigenetic constraints responsible for the low efficiency of SCNT and current attempts to overcome them. We then describe our bovine SCNT protocol for delivering live cloned calves and addressing basic questions about nuclear reprogramming. Other research groups can benefit from our basic protocol and build up on it to improve SCNT in the future. Strategies to correct or mitigate epigenetic errors (e.g., correcting imprinting loci, overexpression of demethylases, chromatin-modifying drugs) can integrate the protocol described here.


Assuntos
Técnicas de Transferência Nuclear , Células-Tronco Pluripotentes , Bovinos , Animais , Técnicas de Transferência Nuclear/veterinária , Clonagem de Organismos/métodos , Biotecnologia , Clonagem Molecular
5.
Sci Rep ; 10(1): 11493, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661262

RESUMO

Orchestrated events, including extensive changes in epigenetic marks, allow a somatic nucleus to become totipotent after transfer into an oocyte, a process termed nuclear reprogramming. Recently, several strategies have been applied in order to improve reprogramming efficiency, mainly focused on removing repressive epigenetic marks such as histone methylation from the somatic nucleus. Herein we used the specific and non-toxic chemical probe UNC0638 to inhibit the catalytic activity of the histone methyltransferases EHMT1 and EHMT2. Either the donor cell (before reconstruction) or the early embryo was exposed to the probe to assess its effect on developmental rates and epigenetic marks. First, we showed that the treatment of bovine fibroblasts with UNC0638 did mitigate the levels of H3K9me2. Moreover, H3K9me2 levels were decreased in cloned embryos regardless of treating either donor cells or early embryos with UNC0638. Additional epigenetic marks such as H3K9me3, 5mC, and 5hmC were also affected by the UNC0638 treatment. Therefore, the use of UNC0638 did diminish the levels of H3K9me2 and H3K9me3 in SCNT-derived blastocysts, but this was unable to improve their preimplantation development. These results indicate that the specific reduction of H3K9me2 by inhibiting EHMT1/2 during nuclear reprogramming impacts the levels of H3K9me3, 5mC, and 5hmC in preimplantation bovine embryos.


Assuntos
Reprogramação Celular/genética , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Histona Metiltransferases/genética , Animais , Blastocisto , Bovinos , Diferenciação Celular , Clonagem de Organismos/métodos , Transferência Embrionária/métodos , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Técnicas de Transferência Nuclear , Oócitos/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional/genética , Quinazolinas/farmacologia
6.
Biol Reprod ; 102(2): 362-375, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31504242

RESUMO

Extracellular vesicles (EVs) are nanoparticles secreted by ovarian follicle cells. Extracellular vesicles are an important form of intercellular communication, since they carry bioactive contents, such as microRNAs (miRNAs), mRNAs, and proteins. MicroRNAs are small noncoding RNA capable of modulating mRNA translation. Thus, EVs can play a role in follicle and oocyte development. However, it is not clear if EV contents vary with the estrous cycle stage. The aim of this study was to investigate the bovine miRNA content in EVs obtained from follicles at different estrous cycle stages, which are associated with different progesterone (P4) levels in the follicular fluid (FF). We collected FF from 3 to 6 mm follicles and evaluated the miRNA profile of the EVs and their effects on cumulus-oocyte complexes during in vitro maturation. We observed that EVs from low P4 group have a higher abundance of miRNAs predicted to modulate pathways, such as MAPK, RNA transport, Hippo, Cell cycle, FoxO, oocyte meiosis, and TGF-beta. Additionally, EVs were taken up by cumulus cells and, thus, affected the RNA global profile 9 h after EV supplementation. Cumulus cells supplemented with EVs from low P4 presented upregulated genes that could modulate biological processes, such as oocyte development, immune responses, and Notch signaling compared with genes of cumulus cells in the EV free media or with EVs from high P4 follicles. In conclusion, our results demonstrate that EV miRNA contents are distinct in follicles exposed to different estrous cycle stage. Supplementation with EVs impacts gene expression and biological processes in cumulus cells.


Assuntos
Células do Cúmulo/metabolismo , Ciclo Estral/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Oócitos/metabolismo , Animais , Bovinos , Ciclo Celular/fisiologia , Ciclo Estral/genética , Feminino , Líquido Folicular/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Meiose/fisiologia , MicroRNAs/genética , Folículo Ovariano/metabolismo
7.
Sci Rep ; 8(1): 17219, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30442989

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

8.
Sci Rep ; 8(1): 13766, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30214009

RESUMO

The rapid decline in fertility that has been occurring to high-producing dairy cows in the past 50 years seems to be associated with metabolic disturbances such as ketosis, supporting the need for research to improve our understanding of the relations among the diet, metabolism and embryonic development. Recently, the ketone body ß-hydroxybutyrate (BOHB) was demonstrated to be a potent inhibitor of histone deacetylases (HDACs). Herein, we performed a series of experiments aiming to investigate the epigenetic effects of BOHB on histone acetylation in somatic cells, cumulus-oocyte complexes (COCs) and somatic cell nuclear transfer (SCNT) embryos. Treatment with BOHB does not increase histone acetylation in cells but stimulates genes associated with ketolysis and master regulators of metabolism. We further demonstrated that maturing COCs with high levels of BOHB does not affect their maturation rate or histone acetylation but increases the expression of PPARA in cumulus cells. Treatment of somatic cell nuclear transfer zygotes with BOHB causes hyperacetylation, which is maintained until the blastocyst stage, causing enhanced FOXO3A expression and blastocyst production. Our data shed light on the epigenetic mechanisms caused by BOHB in bovine cells and embryos and provide a better understanding of the connection between nutrition and reproduction.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/efeitos dos fármacos , Fertilidade/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Oócitos/metabolismo , Ácido 3-Hidroxibutírico/biossíntese , Ácido 3-Hidroxibutírico/genética , Acetilação , Animais , Blastocisto/citologia , Bovinos , Linhagem Celular , Células do Cúmulo/metabolismo , Feminino , Proteína Forkhead Box O3/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Técnicas de Transferência Nuclear , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/biossíntese , Gravidez
9.
Cell Reprogram ; 19(5): 294-301, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28832180

RESUMO

Somatic cell nuclear transfer (SCNT) success is partially hindered by the low epigenetic reprogramming efficiency of the donor cell. Previous studies suggest cellular heterogeneity among donor nuclei in regard to reprogramming potential, which precludes comparison among different strategies to increase cloning success. In this context, we evaluated the effect of using clonal cell populations (CPs) of bovine adult fibroblasts established by single-cell plating in SCNT. Different CPs were evaluated in regard to proliferation rate, senescence level, and chromosome stability, as well as for POU5F1 (POU class 5 homeobox 1) mRNA expression levels. In total, 9 of 24 CPs (37.5%) were successfully expanded in vitro up to the fourth passage and shown to proliferate following cryopreservation, at which time cell analyses were performed. The use of a CP with low senescence level, normal karyotype, and highest POU5F1 expression levels did not improve embryo development rates or quality following SCNT. As previously suggested, this study supports the notion that levels of POU5F1 expression in the donor nucleus do not impact the SCNT results. Notably, the single-cell seeding approach used herein to isolate CPs may be extended to the evaluation of additional predictor markers of reprogrammability success for SCNT in future experiments.


Assuntos
Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência Nuclear , Fator 3 de Transcrição de Octâmero/biossíntese , Animais , Bovinos , Células Cultivadas , Embrião de Mamíferos/citologia , Feminino , Fibroblastos/citologia , Masculino , Fator 3 de Transcrição de Octâmero/genética
10.
Sci Rep ; 7(1): 2645, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572619

RESUMO

Oocytes that undergo in vitro maturation (IVM) are metabolically abnormal and accumulate excess lipid content. However, the mechanism of lipid accumulation and the role of cumulus cells in this process are unclear. Recently, it was shown that fatty acid binding proteins (FABPs) performed intra- and extracellular fatty acid transport. We postulated that FABP3 might be responsible for fatty acid transport from cumulus cells to the oocytes via transzonal projections (TZPs) during IVM. Transcript and protein levels of FABP3 were analyzed in both in vivo- and in vitro-matured cumulus-oocyte-complexes and were increased in IVM samples. Further analysis showed increased lipid content in oocytes and cumulus cells in IVM samples compared to in vivo-derived. We therefore speculated that altered traffic of fatty acids via FABP3 during IVM was the mechanism leading to the excess of lipids accumulated within IVM oocytes. Furthermore, we demonstrated an increase in FABP3 levels and lipid content during the first 9 h of IVM, further strengthening the possibility of fatty acid transport via FABP3 and TZPs. Additionally, disruptions of TZPs during IVM decreased lipid accumulation in oocytes. Our results shed light on a possible mechanism involving FABP3 and TZPs that causes excess lipid accumulation in oocytes during IVM.


Assuntos
Células do Cúmulo/metabolismo , Proteína 3 Ligante de Ácido Graxo/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Metabolismo dos Lipídeos , Oócitos/metabolismo , Animais , Bovinos , Técnicas In Vitro
11.
Ciênc. rural ; 45(10): 1879-1886, Oct. 2015.
Artigo em Inglês | LILACS | ID: lil-758047

RESUMO

This review aim to present some clinical problems found in IVP-derived animals focusing on NT procedures and to discuss the possible role of epigenetics in such process. Also, as cell-secreted vesicles have been reported as possible regulators of important physiological reproductive processes such as folliculogenesis and fertilization, it is also presented herein a new perspective of manipulating the pre-implantation period trough effector molecules contained in such vesicles.


Nesta revisão, apresentamos alguns problemas clínicos encontrados nos animais derivados de PIV, principalmente derivados de transferência de núcleo, e discutimos o possível papel da epigenética em tais processos. Além disso, uma vez que vesículas secretadas por células têm sido descritas como possíveis reguladores de processos reprodutivos fisiológicos importantes, tais como a foliculogênese e a fertilização, estas são aqui apresentadas como uma possível nova ferramenta para a manipulação do período embrionário pré-implantacional através de moléculas efetoras, contidas em tais vesículas.

12.
PLoS One ; 10(8): e0133650, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26274500

RESUMO

Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA). These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6) strains to generate mice with two mtDNA haplotypes (heteroplasmy). Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP), these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR) based on allelic refractory mutation detection system (ARMS-qPCR). Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals.


Assuntos
DNA Mitocondrial/genética , Reação em Cadeia da Polimerase em Tempo Real , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB
13.
PLoS One ; 9(6): e101022, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959750

RESUMO

Cloning of mammals by somatic cell nuclear transfer (SCNT) is still plagued by low efficiency. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this regard, most factors that promote chromatin decondensation, including histone deacetylase inhibitors (HDACis), have been found to increase nuclear reprogramming efficiency, making their use common to improve SCNT rates. Herein we used valproic acid (VPA) in SCNT to test whether the treatment of nuclear donor cells with this HDACi improves pre- and post-implantation development of cloned cattle. We found that the treatment of fibroblasts with VPA increased histone acetylation without affecting DNA methylation. Moreover, the treatment with VPA resulted in increased expression of IGF2R and PPARGC1A, but not of POU5F1. However, when treated cells were used as nuclear donors no difference of histone acetylation was found after oocyte reconstruction compared to the use of untreated cells. Moreover, shortly after artificial activation the histone acetylation levels were decreased in the embryos produced with VPA-treated cells. With respect to developmental rates, the use of treated cells as donors resulted in no difference during pre- and post-implantation development. In total, five clones developed to term; three produced with untreated cells and two with VPA-treated cells. Among the calves from treated group, one stillborn calf was delivered at day 270 of gestation whereas the other one was delivered at term but died shortly after birth. Among the calves from the control group, one died seven days after birth whereas the other two are still alive and healthy. Altogether, these results show that in spite of the alterations in fibroblasts resulting from the treatment with VPA, their use as donor cells in SCNT did not improve pre- and post-implantation development of cloned cattle.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Clonagem de Organismos/métodos , Inibidores de Histona Desacetilases/farmacologia , Técnicas de Transferência Nuclear , Ácido Valproico/farmacologia , Acetilação/efeitos dos fármacos , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Histonas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo
14.
PLoS One ; 9(3): e93287, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24676354

RESUMO

Oocytes from dairy cattle and buffaloes have severely compromised developmental competence during summer. While analysis of gene expression is a powerful technique for understanding the factors affecting developmental hindrance in oocytes, analysis by real-time reverse transcription PCR (RT-PCR) relies on the correct normalization by reference genes showing stable expression. Furthermore, several studies have found that genes commonly used as reference standards do not behave as expected depending on cell type and experimental design. Hence, it is recommended to evaluate expression stability of candidate reference genes for a specific experimental condition before employing them as internal controls. In acknowledgment of the importance of seasonal effects on oocyte gene expression, the aim of this study was to evaluate the stability of expression levels of ten well-known reference genes (ACTB, GAPDH, GUSB, HIST1H2AG, HPRT1, PPIA, RPL15, SDHA, TBP and YWHAZ) using oocytes collected from different categories of dairy cattle and buffaloes during winter and summer. A normalization factor was provided for cattle (RPL15, PPIA and GUSB) and buffaloes (YWHAZ, GUSB and GAPDH) based on the expression of the three most stable reference genes in each species. Normalization of non-reference target genes by these reference genes was shown to be considerably different from normalization by less stable reference genes, further highlighting the need for careful selection of internal controls. Therefore, due to the high variability of reference genes among experimental groups, we conclude that data normalized by internal controls can be misleading and should be compared to not normalized data or to data normalized by an external control in order to better interpret the biological relevance of gene expression analysis.


Assuntos
Expressão Gênica , Genes Essenciais , Oócitos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Animais , Búfalos , Bovinos , Indústria de Laticínios , Feminino , Perfilação da Expressão Gênica , Oócitos/citologia , Padrões de Referência , Estações do Ano
15.
Cell Reprogram ; 14(3): 235-47, 2012 06.
Artigo em Inglês | MEDLINE | ID: mdl-22468998

RESUMO

Although somatic cell nuclear transfer (SCNT) is a promising tool, its potential use is hampered by the high mortality rates during the development to term of cloned offspring. Abnormal epigenetic reprogramming of donor nuclei after SCNT is thought to be the main cause of this low efficiency. We hypothesized that chromatin-modifying agents (CMAs) targeting chromatin acetylation and DNA methylation could alter the chromatin configuration and turn them more amenable to reprogramming. Thus, bovine fibroblasts were treated with 5-aza-2'-deoxycytidine (AZA) plus trichostatin (TSA) or hydralazine (HH) plus valproic acid (VPA) whereas, in another trial, cloned bovine zygotes were treated with TSA. The treatment of fibroblasts with either AZA+TSA or HH+VPA increased histone acetylation, but did not affect the level of DNA methylation. However, treatment with HH+VPA decreased cellular viability and proliferation. The use of these cells as nuclear donors showed no positive effect on pre- and postimplantation development. Regarding the treatment of cloned zygotes with TSA, treated one-cell embryos showed an increase in the acetylation patterns, but not in the level of DNA methylation. Moreover, this treatment revealed no positive effect on pre- and postimplantation development. This work provides evidence the treatment of either nuclear donor cells or cloned zygotes with CMAs has no positive effect on pre- and postimplantation development of cloned cattle.


Assuntos
Bovinos , Núcleo Celular/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Clonagem de Organismos/métodos , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Zigoto/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Bovinos/embriologia , Bovinos/genética , Bovinos/metabolismo , Núcleo Celular/fisiologia , Células Cultivadas , Decitabina , Feminino , Histonas/metabolismo , Hidralazina/farmacologia , Ácidos Hidroxâmicos/farmacologia , Técnicas de Transferência Nuclear/veterinária , Gravidez , Nascimento a Termo/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ácido Valproico/farmacologia , Zigoto/fisiologia
16.
Reprod Biomed Online ; 22(2): 172-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21196133

RESUMO

Ooplasm transfer has been used successfully to treat infertility in women with ooplasmic insufficiency and has culminated in the birth of healthy babies. To investigate whether mitochondrial dysfunction is a factor in ooplasmic insufficiency, bovine oocytes were exposed to ethidium bromide, an inhibitor of mitochondrial DNA replication and transcription, during in-vitro maturation (IVM). Exposure of immature oocytes to ethidium bromide for 24h during IVM hampered meiotic resumption and the migration of cortical granules. However, a briefer treatment with ethidium bromide during the last 4h of IVM led to partial arrest of preimplantation development without affecting oocyte maturation. Ooplasm transfer was then performed to rescue the oocytes with impaired development. In spite of this developmental hindrance, transfer of normal ooplasm into ethidium bromide-treated oocytes resulted in a complete rescue of embryonic development and the birth of heteroplasmic calves. Although this study unable to determine whether developmental rescue occurred exclusively through introduction of unaffected mitochondria into ethidium bromide-damaged oocytes, e.g. ethidium bromide may also affect other ooplasm components, these results clearly demonstrate that ooplasm transfer can completely rescue developmentally compromised oocytes, supporting the potential use of ooplasm transfer in therapeutic applications.


Assuntos
Citoplasma/transplante , Etídio/farmacologia , Oócitos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Citoplasma/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Oócitos/citologia , Oócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA